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Persistent random walk in a honeycomb structure: Light transport in foams
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We study light transport in a honeycomb structure as the simplest two-dimensional model foam. We apply
geometrical optics to set up a persistent random walk for the photons. For three special injection angles of 30°,
60°, and 90° relative to a hexagon’s edge, we are able to demonstrate by analytical means the diffusive
behavior of the photons and to derive their diffusion constants in terms of intensity reflectance, edge length,
and velocity of light. Numerical simulations reveal an interesting dependence of the diffusion constant on the
injection angle in contrast to the usual assumption that in the diffusive limit the photon has no memory for its
initial conditions. Furthermore, for injection angles close to 30°, the diffusion constant does not converge to
the value at 30°. We explain this observation in terms of a two-state model.
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I. INTRODUCTION

Diffusing photons@1–3# in a multiply scattering medium
such as conventional colloidal suspensions or thick alig
nematic liquid crystals, provide information about the sta
and dynamic properties of an opaque system, as rece
developed techniques such as diffusing-wave spectrosc
@4,5# and diffuse-transmission spectroscopy@6# have demon-
strated.

A light beam from a monomode laser is multiply scatter
either from particles in the case of colloidal suspensions
from thermal fluctuations of the local optical axis in nema
liquid crystal. It travels through the medium along vario
paths which interfere with each other at the detector giv
rise to a highly irregular intensity or speckle pattern@2,7#.
Since in leading order the paths are statistically independ
from each other@7#, configurational averaging results in
smooth mean intensity distribution that obeys a diffus
equation. This is the basis of the random walk picture
diffusing photons.

Note that speckle patterns can be explained in the limi
diffusing photons by attaching a phase factor to the phot
which grows, like in a plane wave, with the length of th
photon path. All phase factors of the different photon pa
add up providing a strongly fluctuating intensity pattern
the detecting screen. This is the well-known speckle patt
Conventional diffusing-wave spectroscopy then measures
temporal intensity autocorrelation function of one speckle
replacing, as usual, the ensemble average by an avera
the time domain@4#.

Recent experiments have applied diffusing-wave spect
copy to cellular structures such as foams which consist o
bubbles separated by liquid films@8–13#. This suggests tha
the model for the photon transport based on the random w
picture is still valid. However, there is a debate in literatu
about the main mechanism underlying the random walk@10#.
Relatively dry foam consists of cells separated by thin liq
films. Three of them meet in the Plateau borders which t
define the tetrahedral vertices@14#. One suggestion is tha
light scattering from the Plateau borders is the main origin
the random walk. On the other hand, since the cells are m
1063-651X/2003/68~3!/031102~8!/$20.00 68 0311
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larger than the wavelength of light, one can employ ge
metrical optics and follow a light beam or photon as it
reflected by the liquid films with a probabilityr called the
intensity reflectance. This naturally leads to a random w
of the photons in space.

In this paper we concentrate on the second mechan
based on geometrical optics. Furthermore, instead of a di
dered foam, we choose the honeycomb structure that alw
served as the simplest two-dimensional model foam@15#. In
the Princen-Prud’Homme model, e.g., it has been used
access the rheological properties of foams@16#. Implement-
ing the rules from geometrical optics for transmittance a
reflectance of light results in a persistent random walk. T
concept of random walks has extensively been studied
applied to different areas in physics@17,18#. Especially per-
sistent random walks, where the walker remembers its di
tion from the previous step, are employed in turbulent dif
sion @19#, polymers @20#, diffusion in solids @21#, and in
general transport mechanisms@22–24#.

In the honeycomb structure, the classical one-dimensio
persistent random walk arises when the photons move
pendicular to a cell edge of the honeycomb. It is known a
second-order Markov chain for which an analytical soluti
exists@17#. In addition, we identify two further, analytically
solvable cases, where the photon moves with an angle of
or 60° relative to a cell edge. As we will demonstrate, th
correspond to Markov chains of 12th order. Nevertheless,
are able to proof the diffusive behavior in the long-time lim
and to determine the respective diffusion constants. Num
cal studies for an arbitrary angle of incidencew reveal a
surprising dependence of the diffusion constant onw. They
also motivate a fourth, analytically solvable case based o
two-state model, a formalism well established in the the
of random walks@17#. Thus, we demonstrate that the rando
walk on a honeycomb structure based on rules introdu
from geometrical optics is a highly interesting model syste

Our paper is organized as follows. In Sec. II we introdu
the possible photon paths in a honeycomb structure and i
tify special cases whose analytic solutions we illustrate
Sec. III. The numerical treatment and its results are repo
in Sec. IV. The two-state model that explains a special f
©2003 The American Physical Society02-1
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ture of the numerical results follows in Sec. V. We close w
conclusions in Sec. VI.

II. PHOTON PATHS IN A HONEYCOMB STRUCTURE

In the following we model the photon paths in a hone
comb structure as a random walk with rules motivated
geometrical optics, i.e., an incoming light beam is reflec
from an edge with a probabilityr, called the intensity reflec
tance, or traverses the edge with a probabilityt512r ,
called the transmittance. The unit cell of the honeycomb
hexagon which, recently, has received much attention as
cial type of a polygonal billard@25# and in models of micro-
lasers and microresonators for visible light@26#. Hexagons
are termed pseudointegrable since they are between clas
integrable and chaotic systems@25#. They do not possess
unique set of action-angle variables, which characterize
integrable system, and neighboring beams of trajectory o
split at the vertices of a hexagon unlike a fully chaotic s
tem.

We classify the photon paths in a hexagon with co
pletely reflecting edges (r 51) by the angle of incidencew,
measured relative to one of the edges, and by the sta
position x0l on the edge, wherel is the edge length and 0
<x0<1 @see Fig. 1~a!#. From the geometry and symmetry o
a hexagon, it is straightforward to show that each pho

FIG. 1. ~a! Different photon paths in a hexagon with complete
reflecting edges for different angles of incidencew, measured rela-
tive to the edge, and starting pointx0 on the edge. The paths fo
w530° and 60° are closed. The path for 90° is one dimensio
~b! The representation of the paths as straight lines in a honeyc
structure evolves when the complete hexagon is reflected at
edge where the path is reflected.
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path is characterized by only the following three angles
incidence:

0°<w1<30°, w2560°2w1 , and w3560°1w1 ,
~1!

which leads, in general, to a nonclosed photon path with
different directions of propagation as illustrated in Fig. 1~a!
for w515°. This can also be seen from an instructive rep
sentation of the photon path: by reflecting the hexagon at
edge from which the light ray is reflected, the photon pa
appears as a straight line in a honeycomb structure@see Fig.
1~b!#. The special cases ofw15w2530°,w3590° andw1
50°,w25w3560° give closed photon paths@see Fig. 1~a!#
with a finite number of step lengths and directions. Th
therefore allow an analytical treatment of the random w
which takes place at intensity reflectancesr ,1. We will
illustrate the calculation of the corresponding diffusion co
stants in the following section. The anglesw15w2530° and
w3590° correspond to separate random walks in two a
one dimension, respectively. However, close tow1'30° they
mix and can be treated in terms of a two-state model wh
we present in Sec. V.

When implementing the geometric optics, we assume
the intensity reflectancer and the transmittancet512r do
not depend on the angle of incidencew and that the edges ar
infinitely thin so there is no lateral displacement of the tra
mitted light ray along the edge. In the concrete calculatio
we will normalize edge lengthl and light velocityc to 1.

III. ANALYTICAL TREATMENT OF PHOTON
TRANSPORT IN A HONEYCOMB

As already mentioned in the Introduction, the rando
walk on a honeycomb based on geometric optics is a pe
tent random walk since the new direction chosen by the p
ton in the (n11)th step depends on the direction of thenth
step. In one dimension, which in our case corresponds to
angle of incidencew590° and step lengthA3l , the solution
for the probabilityPn(x) of finding the random walker a
locationx aftern steps is well known. It is determined in th
framework of master equations and characteristic functio
i.e., the spatial Fourier transforms of probability distributio
@17#. The persistent walk in one dimension is a second-or
Markov process sincePn(x) obeys a second-order linear di
ference equation in the discrete step indexn which, in the
continuous case, gives the telegrapher equation. For
equations, the long-time limit is shown to be diffusive. In o
case, with step lengthA3l and reflectancer, the diffusion
constant amounts to

D~90°!5
A3

2

12r

r
lc. ~2!

In the following two sections, we will illustrate the analytica
treatment of the persistent random walks forw560° and 30°
based on the formulation of a set of master equations and
use of characteristic functions. Since the random walks
two dimensional, the evaluation of the diffusion constants
much more elaborate.

l.
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A. Angle of incidence:wÄ60°

As already mentioned in the last section, in a hexag
with totally reflecting edges (r 51), photons injected at an
angle ofw560° move along a closed path generally co
posed of six steps~see Fig. 2!. Only three directions in space
characterized by unit vectorsb̂1 , b̂2, and b̂3, are assumed
and along each direction a short (bis5bsb̂i) and a long (bi l

5bl b̂i) step vector exists with the respective magnitudesbs
51.52u0.52x0u and bl51.51u0.52x0u. The average step
length is thus 1.5, and it is assumed forx050.5 where the
closed path is composed of only three steps.

Note that in the central cell in Fig. 2 the photon is alwa
reflected to the left. For partially reflecting edges (r ,1), the
photons move to a neighboring cell with the probabilityt. At
each transmission, the photon’s attribute to be reflected to
right or to the left changes~see Fig. 2!. To fully characterize
the status of a photon, we therefore have to introduce a
licity 6 besides the position and the step vectors.

We denote byPn
6 is(x) or Pn

6 i l (x) the probability that the
photon after itsnth step arrives at positionx5(x,y) with
step vectorbis or bi l and helicity6. According to Fig. 2, we
can establish a set of 12 master equations which couple
probabilities at stepn11 to the probabilities at stepn. We
only give the following first four equations:

Pn11
11l ~x!5rPn

13s~x2b1l !1tPn
21s~x2b1l !,

Pn11
11s~x!5rPn

13l~x2b1s!1tPn
21l~x2b1s!,

Pn11
21l ~x!5rPn

22s~x2b1l !1tPn
11s~x2b1l !,

Pn11
21s~x!5rPn

22l~x2b1s!1tPn
11l~x2b1s!. ~3!

For the description of the photon distribution in the plan
we do not need to specify the internal state~step vector and

FIG. 2. Path of photons injected with an angle ofw560°. The

photons move along three directionsb̂1 , b̂2, andb̂3 with a short and
a long step length. By transmission to a neighboring cell, the he
ity of the photon path changes.
03110
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helicity! explicitly. That means we are mainly interested
the probability that the photon arrives at positionx at stepn,

Pn~x!5 (
6,bis

Pn
6 is~x!1 (

6,bi l

Pn
6 i l ~x!, ~4!

from which we extract the first and second moments aften
steps as the characteristic features of a random walk:

^x&n5E E xPn~x,y!dxdy,

^y&n5E E yPn~x,y!dxdy,

^~x2^x&n!2&n5E E ~x2^x&n!2Pn~x,y!dxdy,

^~y2^y&n!2&n5E E ~y2^y&n!2Pn~x,y!dxdy. ~5!

These moments are conveniently calculated from the Fou
transform of the probability distribution, also called chara
teristic function,

Pn~k!5E E eik•xPn~x,y!dxdy, ~6!

from which the moments follow as

^xm1ym2&5~2 i !m11m2
]m11m2Pn~k!

]kx
m1]ky

m2 U
k50

, ~7!

wherek5(kx ,ky) andm1 , m2 are positive integers including
zero.

In the following we illustrate how we compute the cha
acteristic functionPn(k). We start from the set of couple
master equations~3!, take its Fourier transform and write
in a compact form as

~2E11M!Pn50, ~8!

where

Pn5„Pn
11l~k!,Pn

11s~k!,Pn
21l~k!,Pn

21s~k!, . . . …t ~9!

is a 12-component vector containing the step-depend
probability distributions. The shift operatorE acts on the step
index n as follows:

EPn
6 i l ~k!5Pn11

6 i l ~k!, ~10!

whereE21 corresponds to the time derivative in the co
tinuous case. The symbolM denotes a 12312 matrix that
depends on the reflectancer and exponential factors such a
exp(ik•bi l ), which result from the step vectors in Eqs.~3!.
We list the completeM in the Appendix.

In analogy to the solution of a homogeneous system
linear equations, we know that every single probability d
tribution obeys the same linear equation: det(M

-

2-3
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2E1)Pn
11l(k)50, where det means determinant. Therefo

the sumPn(k), defined in Eqs.~4! and ~6!, also obeys

det~M2E1!Pn~k!50. ~11!

We used the algebraic programMATHEMATICA to calculate
the determinant of the 12312 matrixM2E1. It results in an
even polynomial of degree 12 in the shift operatorE, which
is equivalent to the characteristic polynomial of the mat
M. With definition ~10! for E, we obtain from Eq.~11! the
master equation

(
i 50

i 56

m2i Pn12i~k!50, ~12!

where the coefficientsm2i of the characteristic polynomial o
M are listed in the Appendix. We add two comments. Fir
Eq. ~12! is a 12th-order linear difference equation forPn(k)
indicating that the corresponding random walk is a 12th
der Markov chain. In the continuum limit, it would corre
spond to a linear partial differential equation with time d
rivatives up to the 12th order. Second, due to
normalization of the probability distribution@Pn(k50)
51#, we find

(
i 50

i 56

m2i50, ~13!

and can therefore identify61 as two eigenvalues ofM.
We do not make an attempt to determinePn(k) com-

pletely. Instead we are interested in the long-time limits of
first two moments. Taking first derivatives of Eq.~12! with
respect tok and using Eq.~7!, we find a master equation fo
the mean displacement along thex direction,

(
i 50

i 56

m2i uk50^x&n12i50 ~14!

and the equivalent result for they direction. To arrive at Eq.
~14!, we used]m2i /]kuk5050 since the step vectorsbis and
bi l add up to zero. To solve Eq.~14!, we insert the ansatz
^x&n}zn, which readily results in the characteristic equati
for M at k50. We already know the two eigenvalues61,
the others are listed in the Appendix. Their magnitudes
always smaller than one. We can therefore conclude tha
the long-time limit or for largen

^x&n5^y&n50. ~15!

The mean-square displacement alongx obeys

(
i 50

i 56 S m2i uk50^x
2&n12i2

]2m2i

]kx
2 U

k50
D 50 ~16!

and an equivalent equation is valid alongy. Note that Eq.
~16! corresponds to Eq.~14! but now with an inhomogeneity
Since we already know the solutions of the homogene
equation, they decay to zero or give a constant of the orde
1 in the long-time limit, we just need a special solution f
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which we make the ansatz^x2&n5an. The constanta is eas-
ily found from Eq.~16! and we obtain in the long-time limi

^x2&n5
1

S2

]2S1

]kx
2 U

k50

n, ~17!

where S25( i 51
i 562i m2i and the derivative ofS15( i 51

i 55m2i

both at k50 are given in the Appendix and Eq.~13! was
used. For large values ofn, the time for n steps is t
51.5ln/c, where 1.5l is the average step length. Returnin
to physical units, we obtain the diffusive behavior for th
mean-square displacements

^x2&52Dxt and ^y2&52Dyt, ~18!

and the diffusion constants read

D~60°!5Dx~60°!5Dy~60°!5
1

2

12r

r
lc. ~19!

As expected, the diffusion is isotropic. Note that although
single-step lengths depend on the starting positionx0 on the
edge of a hexagon, only their average appears in the fi
reasonable result.

B. Angle of incidence:wÄ30°

For completely reflecting edges, the photons move alo
a closed path again composed of six steps~see Fig. 3!. The
three step vectors,bi5bb̂i ( i 51,2,3), and their reversed
partners,bi5b8b̂i ( i 54,5,6) generally possess different st
lengthsb and b8, which depend on the starting positionx0
on the edge. The average, however, is always the sameb
1b8)/25A3/2.

FIG. 3. Path of photons injected with an angle ofw530°. The

photons move along six directionsb̂1 , . . . ,b̂6. By transmission to a
neighboring cell, the helicity of the photon path changes and wit
the step lengths.
2-4
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In the central cell of Fig. 3, the photon is always reflect
to the left. As before, for partially reflecting edges (r ,1),
the photons move to a neighboring cell, where they are
flected to the right. In the preceding section, we introduc
the helicity6 to distinguish between the two cases. In ad
tion, after transmission to a neighboring cell, the step vec
along one direction interchange their lengths~see Fig. 3!. We
take this into account by introducing step vectorsbi

1 andbi
2 .

As before, we introduce the probabilityPn
6 i(x) that the

photon after itsnth step arrives at positionx with step vector
bi

6 and establish a set of 12 master equations from which
only give the first two ones

Pn11
11 ~x!5rPn

16~x2b1
1!1tPn

21~x2b1
1!,

Pn11
21 ~x!5rPn

24~x2b1
2!1tPn

11~x2b1
2!. ~20!

Applying the same formalism as in the preceding secti
we find again that in the long-time limit the photon mov
diffusively with the diffusion constants

D~30°!5Dx~30°!5Dy~30°!5
A3

2

12r

r
lc, ~21!

independent of the starting positionx0 on the edge. Interest
ingly, they agree with the diffusion constantD(90°) for w
590° introduced in Eq.~2! for the one-dimensional random
walk.

We note thatD(30°) is larger thanD(60°) from Eq.~19!
by a factor ofA3. We roughly understand this as follows.
the casew530°, the photons are reflected into the forwa
direction, i.e., their direction changes by a total angle of o
60°. For w560° they are reflected in the backward dire
tion, since the direction changes by 120°. In the latter ca
the diffusion is therefore much more hindered which leads
a smaller diffusion constant.

IV. NUMERICAL SIMULATIONS

To access the photon’s random walk for injection ang
different from 30°, 60°, and 90°, we further studied o
model by numerical simulations. The computer progr
takes 104 photons at the initial positionx0 ~on one of the
edges of the hexagon! and with an injection anglew. Then it
generates the trajectory of each photon following a stand
Monte Carlo procedure and evaluates the statistics of
photon cloud at timestP@500,650, . . . ,4850# ~in units of
l /c). The mean-square displacement measuring the widt
the photon cloud is computed for each snapshot at timet and
then fitted to 2Dt1a0 for each spatial direction by th
method of linear regression. An offseta0 takes into accoun
the initial ballistic regime. Within our statistical errors,Dx
andDy give the same result and the correlation factor

r5
^xy&2^x&^y&

A^x2&^y2&
~22!

is not significant, so the diffusion is isotropic.
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For anglesw530°, 60° and values between 0° and 30
the simulation is repeated for each intensity reflectancr
P@0.1,0.2, . . . ,0.9# with all values of x0
P@0.05,0.1, . . . ,0.9#. In Fig. 4 we plot the average of th
diffusion constantsDx andDy as a function ofr. The diffu-
sion constants atw560° ~open circless) andw530° ~open
boxesh) are shown for all values of the starting pointx0.
The numerical results agree very well with the theoreti
values of Eqs.~19! and~21! for the diffusion constants. The
relative error of the numerical values with respect to t
theoretical prediction is less than 2% and within our sta
tical error. No dependence on the starting pointx0 is ob-
served in agreement with theory.

The diffusion constants for angles between 0.5° and
~plus symbol1) all lie close toD(60°). A careful inspection
shows that they are situated above the 60° line. Furtherm
our statistical errors reveal that the deviation from the 6
line is significant. To investigate this observation further,
performed a series of simulations for the angular rangew
P@0.5°,6.4°,. . . ,24.1°#, wP@25°,26°, . . . ,29°#, and w
P@29.1°,29.2°,. . . ,29.9°#. To increase the resolution, th
rescaled diffusion constantD(w)/D(w560°) versusr is
plotted in Fig. 5. We have averagedD(w) over all starting
positionsx0. The errorbars shown forw50.5° reflect the
standard deviation of this averaging process. The errorb
are similar for all the other points.

Figure 5 reveals several remarkable features. Angles c
to w50° are associated with angles close to 60°, as
plained in Sec. II. So the diffusion constant is close
D(60°) as demonstrated by the full line. Increasing now
incident angle fromw50° to w530° results in a systemati
increase of the diffusion constant. However, forw→30°, we
do not obtain the resultD(30°)/D(60°)5A3 as one might
expect. Instead the ratioD(w)/D(60°) converges against
value between 1.15 and 1.16. Though the calculation
D(w) is beyond any theoretical treatment, we succeede
treat the limiting case ofw→30° analytically in a two-state
model which we present in the following section. The res

FIG. 4. The diffusion constant in units of edge lengthl times
light velocity c as a function of intensity reflectancer. Theoretical
and Monte Carlo simulation results are denoted, respectively
lines and points. The dash-dotted line refers to the two-state m
~TSM!.
2-5
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is already indicated as dashed line in Fig. 5 and also in
4. In addition, Fig. 5 demonstrates thatD(w) systematically
deviates from the simple (12r )/r law calculated for the
analytic cases.

We started to investigate disordered foams. In an imp
fect honeycomb structure with slightly random disorder,
special case forw530° does no longer exist, as expecte
Furthermore, all the curves in Fig. 5 for different injectio
angles collapse on a single curve, i.e., the diffusion cons
no longer depends onw. However, the surprising result i
that the diffusion constant still deviates from the usual
2r )/r law since it contains an additional factor linear inr.
So one special feature of Fig. 5 is preserved. We can exp
this behavior within an effective cage model. Details will
reported in a forthcoming paper@27#.

V. TWO-STATE MODEL

In Sec. II we explained that the incident anglesw15w2
530° andw3590° correspond to separate random walks
two and one dimension. However, ifw1 deviates slightly
from 30°, the two random walks mix as illustrated in Fig.

FIG. 5. The diffusion constantD(w) plotted relative toD(60°)
as a function of intensity reflectancer for different values of injec-
tion anglew. The dashed line is the limiting caseD(w→30°) cal-
culated within the two-state model in Sec. V.

FIG. 6. Path of a photon injected with an anglew529.4° rela-
tive to the bottom edge of the hexagonal billiard. The photon circ
in the hexagon until it switches to a one-dimensional bouncing s
between the edges 12 and 45.
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for r 51. That means the motion of the photon consists
two different states. In the first one it spends some timet2d
diffusing in the plane. Then it switches to the second st
where it performs essentially a one-dimensional rand
walk, bouncing between two opposite edges during the t
tb , until it switches back to the previous state. In the theo
of random walks such a process is described by a multis
formalism @17#. It calculates the diffusion constant for th
two-state process as an average of the diffusion constan
the single states weighted by the average waiting timest2d
andtb , the random walker spends in each state,

Dx~w→30°!5
Dx~30°!t2d1Dbxtb

t2d1tb
, ~23a!

Dy~w→30°!5
Dy~30°!t2d1Dbytb

t2d1tb
. ~23b!

The effective diffusion constants for the bouncing state,Dbx
and Dby , can be related toD(90°) as follows. We assume
that all three possible bouncing states between oppo
edges occur with the same probability. Furthermore, th
contributions toDbx andDby are obtained by projecting th
one-dimensional random walk onto thex and y direction,
which finally gives

Dbx5
2
3 cos230°D~90°!5 1

2 D~90°!, ~24a!

Dby5
1
3 ~2 sin230°11!D~90°!5 1

2 D~90°!. ~24b!

The calculation of the waiting times is a geometrical ex
cise. Let us consider first the bouncing state which the p
ton enters at the lower right corner 1 of the hexagon in F
6. It then travels along the diagonal hitting the opposite ed
45, a small distancedsb away from the corner 5. In succes
sive reflections or transmissions, the photon’s position mo
along the edge until it hits either the corner 2 or 4. Here
photon switches to the two-dimensional state. In our redu
units, the number of stepsnb in the bouncing state is thu
approximated by 1/dsb . Multiplied with the step timedtb ,
gives the waiting time

tb5nbdtb , ~25!

with

nb5
1

A3 tan~30°2w!
and dtb5

A3

cos~30°2w!
.

~26!

In the two-dimensional random walk, the photon take
short and a long step to move a distanceds2d along the edge.
The waiting timet2d is then calculated from the number o
stepsn2d and the step timedt2d as

t2d5n2ddt2d , ~27!

with

s
te
2-6
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n2d5
2 sinw

A3 sin~30°2w!
and dt2d5

A3

4 sinw
. ~28!

It is the ratiot2d /tb which enters the effective diffusion
constants. Using Eqs.~25!–~28! givest2d /tb51/2. The ratio
is independent ofw due to our approximation fornb and
n2d . It becomes exact forw→30°. Together with Eqs.~24!
and the actual values forD(30°) @Eq. ~21!# andD(90°) @Eq.
~2!#, we obtain from Eqs.~23!

Dx~w→30°!5Dy~w→30°!5
A3

3

12r

r
lc. ~29!

This is the value indicated in Fig. 5 relative toD(60°) as
dashed line. The limiting value oft2d /tb51/2 means that
there is no smooth transition toD(30°) for w→30°.

VI. CONCLUSIONS

We have studied a persistent random walk on a hon
comb structure based on rules motivated by geometric op
Both analytical and numerical studies confirm the diffus
behavior of the photons in the long-time limit. Three cases
the injection angle,w530°, 60°, and 90°, allow an analyti
expression forD(w) from which the third one for a one
dimensional persistent random walk is well known in liter
ture. The second and third case can be solved although
correspond to a Markov chain of 12th order. In all thr
cases, the diffusion constant is proportional to (12r )/r
which expresses the fact that forr 50 the photon transport is
ballistic and that forr 51 the photon stays confined to th
initial hexagon. Numerical simulations demonstrate an in
esting dependence of the diffusion constant on the injec
angle w summarized as D(60°),D(w),D(w→30°)
,D(30°), whereD(60°) andD(w→30°) differ by a factor
of 2A3/3. This is a remarkable property since usually t
diffusion process erases the memory for the initial con
tions. The numerical results ofD(w) reveal a fourth analyti-
cally solvable case for injections anglesw→30°, where the
motion of the photon switches between a one- and tw
dimensional diffusion state. Accordingly, the random walk
described within a two-state model. In addition, the simu
tions show a significant deviation from the simple (12r )/r
law of the analytic cases for which we do not have a
explanation so far.

In light transport the transport-mean-free pathl * plays a
determining role since it is a measure for the length o
which the direction of propagation has fully changed@1#. In
two-dimensional systems, it is defined viaD5cl* /2. As a
key parameter, it can be measured experimentally@4–6#. In
our case it is of the order of (12r ) l /r . In a realistic model
for r based on the Fresnel formulas and for thicknessesd of
the liquid films comparable to the wavelength of light, w
find a significant dependence on incident anglew andd @27#.
When averaged overw andd, we obtainr'0.2 which gives
realistic values ofl * '4l @10#.

Of course, our model is highly simplified. We therefo
have extended our studies towards real foams by introdu
03110
y-
s.

f

-
ey

r-
n

e
i-

-

-

y

r

g

topological and geometrical disorder based on a Voro
foam model@15#. In addition, as just mentioned, we hav
implemented the exact intensity reflectancer using the
Fresnel formulas. Furthermore, we have introduced diso
in the film thickness. The results will be presented elsewh
@27#. A possible extension of our model might include sc
tering from the Plateau borders as suggested in Ref.@10#.

ACKNOWLEDGMENTS

We would like to thank S. Cohen-Addad, R. Ho¨hler, H.
Larralde, G. Maret, N. Rivier, S. E. Skipetrov, D. Weair
and J. Wiersig for fruitful discussions. H.S. acknowledg
financial support from the Deutsche Forschungsgemeinsc
under Grant No. Sta 352/5-1. MF.M. thanks the Internatio
Graduate College at the University of Konstanz for financ
support.

APPENDIX

The matrixM, introduced in Eq.~8!, can conveniently be
written in block form

M5S 0 tM1 0 0 rM1 0

tM1 0 0 rM1 0 0

rM2 0 0 tM2 0 0

0 0 tM2 0 0 rM2

0 0 rM3 0 0 tM3

0 rM3 0 0 tM3 0

D ,

~A1!

where

05S 0 0

0 0D ,

Mn5S 0 exp~ ik•bnl!

exp~ ik•bns! 0 D . ~A2!

The characteristic equation ofM reads

det~M2z1!5(
i 50

i 56

m2iz
2i50, ~A3!

where

m1251,

m10522~12r !2s1 ,

m852~12r !2~r 224r 12!s1* 1~12r !4s2 ,

m652~12r !4~2112r !s322~4224r 154r 2256r 3127r 4

26r 512r 6!,

m45~122r !2~12r !4s2* 12~224r 1r 2!~123r

12r 2!2s1 ,
2-7
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m2522~122r !4~12r !2s1* ,

m05~122r !6, ~A4!

with

s15exp@ i ~b1l1b1s!•k#1exp@ i ~b2l1b2s!•k#

1exp@ i ~b3l1b3s!•k#,

s25exp@2i ~b1l1b1s!•k#1exp@2i ~b2l1b2s!•k#

1exp@2i ~b3l1b3s!•k#,

s352cos@~b1l1b1s2b3l2b3s!•k#12 cos@~b1l1b1s2b2l

2b2s!•k#12 cos@~b3l1b3s2b2l2b2s!•k#. ~A5!

The eigenvalues, evaluated atk50, are

z152z251,
om

d

y E
sti

er,

ys

in

03110
z352z45u2r 21u,

z55z652z752z8520.5r 20.5A428r 1r 2,

z95z1052z1152z12520.5r 10.5A428r 1r 2,
~A6!

with uzi u<1 for 0<r<1.
The coefficients introduced in Eq.~17! are evaluated as

]2S1

]kx
2

uk505
]2S1

]ky
2

uk505108~12r !2r 4

S2uk50572~12r !r 5, ~A7!

where

S15(
i 51

i 55

m2i and S25(
i 51

i 56

2i m2i . ~A8!
ett.
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