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Persistent random walk in a honeycomb structure: Light transport in foams

MirFaez Mirit? and Holger Stark
nstitute for Advanced Studies in Basic Sciences, Zanjan 45195-159, Iran
2Universita Konstanz, Fachbereich Physik, D-78457 Konstanz, Germany
(Received 19 December 2002; published 16 September)2003

We study light transport in a honeycomb structure as the simplest two-dimensional model foam. We apply
geometrical optics to set up a persistent random walk for the photons. For three special injection angles of 30°,
60°, and 90° relative to a hexagon’s edge, we are able to demonstrate by analytical means the diffusive
behavior of the photons and to derive their diffusion constants in terms of intensity reflectance, edge length,
and velocity of light. Numerical simulations reveal an interesting dependence of the diffusion constant on the
injection angle in contrast to the usual assumption that in the diffusive limit the photon has ho memory for its
initial conditions. Furthermore, for injection angles close to 30°, the diffusion constant does not converge to
the value at 30°. We explain this observation in terms of a two-state model.
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[. INTRODUCTION larger than the wavelength of light, one can employ geo-
metrical optics and follow a light beam or photon as it is

Diffusing photong 1-3] in a multiply scattering medium, reflected by the liquid films with a probability called the
such as conventional colloidal suspensions or thick aligneéhtensity reflectance. This naturally leads to a random walk
nematic liquid crystals, provide information about the staticof the photons in space.
and dynamic properties of an opaque system, as recently In this paper we concentrate on the second mechanism
developed techniques such as diffusing-wave spectroscodyased on geometrical optics. Furthermore, instead of a disor-
[4,5] and diffuse-transmission spectroscdpy have demon- dered foam, we choose the honeycomb structure that always
strated. served as the simplest two-dimensional model f¢asi. In

A light beam from a monomode laser is multiply scatteredthe Princen-Prud’Homme model, e.g., it has been used to
either from particles in the case of colloidal suspensions ofccess the rheological properties of fogh6]. Implement-
from thermal fluctuations of the local optical axis in nematicing the rules from geometrical optics for transmittance and
liquid crystal. It travels through the medium along variousreflectance of light results in a persistent random walk. The
paths which interfere with each other at the detector givingconcept of random walks has extensively been studied and
rise to a highly irregular intensity or speckle patt¢7].  applied to different areas in physif7,18. Especially per-
Since in leading order the paths are statistically independersistent random walks, where the walker remembers its direc-
from each othef7], configurational averaging results in a tion from the previous step, are employed in turbulent diffu-
smooth mean intensity distribution that obeys a diffusionsion [19], polymers[20], diffusion in solids[21], and in
equation. This is the basis of the random walk picture forgeneral transport mechanisiZ2—24.
diffusing photons. In the honeycomb structure, the classical one-dimensional

Note that speckle patterns can be explained in the limit opersistent random walk arises when the photons move per-
diffusing photons by attaching a phase factor to the photongendicular to a cell edge of the honeycomb. It is known as a
which grows, like in a plane wave, with the length of the second-order Markov chain for which an analytical solution
photon path. All phase factors of the different photon pathgxists[17]. In addition, we identify two further, analytically
add up providing a strongly fluctuating intensity pattern onsolvable cases, where the photon moves with an angle of 30°
the detecting screen. This is the well-known speckle pattermor 60° relative to a cell edge. As we will demonstrate, they
Conventional diffusing-wave spectroscopy then measures theorrespond to Markov chains of 12th order. Nevertheless, we
temporal intensity autocorrelation function of one speckle byare able to proof the diffusive behavior in the long-time limit
replacing, as usual, the ensemble average by an averagednd to determine the respective diffusion constants. Numeri-
the time domairf4]. cal studies for an arbitrary angle of incidengereveal a

Recent experiments have applied diffusing-wave spectrossurprising dependence of the diffusion constantgorirhey
copy to cellular structures such as foams which consist of aialso motivate a fourth, analytically solvable case based on a
bubbles separated by liquid filnh8—13]. This suggests that two-state model, a formalism well established in the theory
the model for the photon transport based on the random wal&f random walkg17]. Thus, we demonstrate that the random
picture is still valid. However, there is a debate in literaturewalk on a honeycomb structure based on rules introduced
about the main mechanism underlying the random Walf. ~ from geometrical optics is a highly interesting model system.
Relatively dry foam consists of cells separated by thin liquid Our paper is organized as follows. In Sec. Il we introduce
films. Three of them meet in the Plateau borders which thethe possible photon paths in a honeycomb structure and iden-
define the tetrahedral verticéd4]. One suggestion is that tify special cases whose analytic solutions we illustrate in
light scattering from the Plateau borders is the main origin ofSec. Ill. The numerical treatment and its results are reported
the random walk. On the other hand, since the cells are mucdin Sec. IV. The two-state model that explains a special fea-
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a) path is characterized by only the following three angles of
incidence:

0°=¢1=30°, ¢,=60°—¢;, and ¢3=60°+¢y,

e (1)
9

AP which leads, in general, to a nonclosed photon path with six
o=15° 9=30° different directions of propagation as illustrated in Figa)1

for ¢=15°. This can also be seen from an instructive repre-
sentation of the photon path: by reflecting the hexagon at the
edge from which the light ray is reflected, the photon path
appears as a straight line in a honeycomb strudisee Fig.
1(b)]. The special cases a@f;=¢,=30°,03=90° and ¢,
=0°,0,= ¢3=60° give closed photon pathisee Fig. 1a)]

®=60° @=90° . . S
with a finite number of step lengths and directions. They
b) therefore allow an analytical treatment of the random walk
0=90° ¢=60° which takes place at intensity reflectanaes1l. We will

illustrate the calculation of the corresponding diffusion con-
stants in the following section. The angles= ¢,=30° and

¢=30" ¢3=90° correspond to separate random walks in two and
one dimension, respectively. However, closete=30° they
¢=15° mix and can be treated in terms of a two-state model which

we present in Sec. V.
When implementing the geometric optics, we assume that
the intensity reflectance and the transmittance=1—r do

FIG. 1. (a) Different photon paths in a hexagon with completely _not depend on the angle of incidengend that the edges are

reflecting edges for different angles of incidengemeasured rela-  INfinitely thin so there is no lateral displacement of the trans-
tive to the edge, and starting poirg on the edge. The paths for Mitted light ray along the edge. In the concrete calculations,
¢=30° and 60° are closed. The path for 90° is one dimensionalve Will normalize edge lengthand light velocityc to 1.

(b) The representation of the paths as straight lines in a honeycomb

structure evolves when the complete hexagon is reflected at the Ill. ANALYTICAL TREATMENT OF PHOTON

edge where the path is reflected. TRANSPORT IN A HONEYCOMB

As already mentioned in the Introduction, the random
walk on a honeycomb based on geometric optics is a persis-
tent random walk since the new direction chosen by the pho-
ton in the 1+ 1)th step depends on the direction of tiih

Il PHOTON PATHS IN A HONEYCOMB STRUCTURE step. In one dimension, which in our case correspondg to an

angle of incidencep=90° and step lengtk/3!, the solution

In the following we model the photon paths in a honey-for the probability P,,(x) of finding the random walker at
comb structure as a random walk with rules motivated bylocationx aftern steps is well known. It is determined in the
geometrical optics, i.e., an incoming light beam is reflectedramework of master equations and characteristic functions,
from an edge with a probability, called the intensity reflec- i.e., the spatial Fourier transforms of probability distributions
tance, or traverses the edge with a probabilityl—r,  [17]. The persistent walk in one dimension is a second-order
called the transmittance. The unit cell of the honeycomb is ajarkov process sincB, (x) obeys a second-order linear dif-
hexagon which, recently, has received much attention as spéerence equation in the discrete step inagewhich, in the
cial type of a polygonal billard25] and in models of micro-  continuous case, gives the telegrapher equation. For both
lasers and microresonators for visible ligi26]. Hexagons equations, the long-time limit is shown to be diffusive. In our
are termed pseudointegrable since they are between classieglse, with step Iength/§| and reflectance, the diffusion
integrable and chaotic systerf5]. They do not possess a constant amounts to
unique set of action-angle variables, which characterize an

ture of the numerical results follows in Sec. V. We close with
conclusions in Sec. VI.

integrable system, and neighboring beams of trajectory only . V31—t
split at the vertices of a hexagon unlike a fully chaotic sys- D(90°)= 2 lc. 2
tem.

We classify the photon paths in a hexagon with com-In the following two sections, we will illustrate the analytical
pletely reflecting edges & 1) by the angle of incidence, treatment of the persistent random walks ¢or 60° and 30°
measured relative to one of the edges, and by the startingased on the formulation of a set of master equations and the
position xol on the edge, wherkis the edge length and O use of characteristic functions. Since the random walks are
<Xg=<1 [see Fig. 8]. From the geometry and symmetry of two dimensional, the evaluation of the diffusion constants is
a hexagon, it is straightforward to show that each photormuch more elaborate.
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FIG. 2. Path of photons injected with an angleg#® 60°. The

photons move along three directioms b,, andb; with a short and
a long step length. By transmission to a neighboring cell, the helic
ity of the photon path changes.

A. Angle of incidence: ¢=60°

As already mentioned in the last section, in a hexagon

with totally reflecting edgesr=1), photons injected at an
angle of ¢=60° move along a closed path generally com-
posed of six step&ee Fig. 2. Only three directions in space,

characterized by unit vectois;, b,, andbs, are assumed,
and along each direction a sholid=b¢b) and a long by,

= b|6i) step vector exists with the respective magnitubdgs
=1.5-|0.5-Xg| andb;=1.5+]0.5—-X,|. The average step
length is thus 1.5, and it is assumed fgy=0.5 where the
closed path is composed of only three steps.

Note that in the central cell in Fig. 2 the photon is always

reflected to the left. For partially reflecting edges<(1), the
photons move to a neighboring cell with the probabitibAt

PHYSICAL REVIEW E 68, 031102 (2003

helicity) explicitly. That means we are mainly interested in
the probability that the photon arrives at positioat stepn,

PaX)= 2 Py 00+ 2 Py
is il

(x), 4

from which we extract the first and second moments after
steps as the characteristic features of a random walk:

<X>n:f fon(x,y)dxdy,
<y>n=f fyPn(x,y)dxdy,
(= 00m2a= | [ = 00mPrxydedy,

(== | [ o=@ Pixyaxdy. ©)
These moments are conveniently calculated from the Fourier
transform of the probability distribution, also called charac-
teristic function,

Potki= [ [ @*pyoxy)xay ®)
from which the moments follow as
) am1+m2P (k)
<Xm1ymz>:(_|)m1+m2é)kTO”k?n2 , (7)
x Y k=0

wherek= (k,,k,) andm,, m, are positive integers including
Zero.

In the following we illustrate how we compute the char-
acteristic functionP,(k). We start from the set of coupled
master equation&3), take its Fourier transform and write it

each transmission, the photon’s attribute to be reflected to thie a compact form as

right or to the left changetsee Fig. 2 To fully characterize

the status of a photon, we therefore have to introduce a he-

licity + besides the position and the step vectors.

We denote byP'S(x) or P;'"(x) the probability that the
photon after itsnth step arrives at positior=(x,y) with
step vectob; or by and helicity=. According to Fig. 2, we

(=&1+M)P,=0, (8)

where

Po=(P (k)P k), P (k)P k), ...)Y (9)

can establish a set of 12 master equations which couple thg a 12-component vector containing the step-dependent

probabilities at stem+ 1 to the probabilities at step. We
only give the following first four equations:

+11
n+1

P (X)=rP/3(x—by)+tP, (x—by),

PiB0)=rP ;% (x—by) +tP, M (x—byy),

-1l
n+1

P, () =rP,2(x—by)+tP;} S(x—hy)),

—1s
n+1

Pri(x)=rP, 2 (x—byg) +tP; Y(x—byy). (3)

For the description of the photon distribution in the plane,

we do not need to specify the internal stédeep vector and

probability distributions. The shift operatéracts on the step
indexn as follows:

ePy (k) =P (k),
where £—1 corresponds to the time derivative in the con-
tinuous case. The symbdll denotes a 12 12 matrix that
depends on the reflectanceind exponential factors such as
exp(k-b;), which result from the step vectors in EdS).
We list the completévl in the Appendix.

In analogy to the solution of a homogeneous system of
linear equations, we know that every single probability dis-

tribution obeys the same linear equation: dét(

(10
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—Sl)P,T“(k)zO, where det means determinant. Therefore
the sumP,(k), defined in Eqs(4) and(6), also obeys

de{M—E1)P,(k)=0. (11)

We used the algebraic programTHEMATICA to calculate
the determinant of the 2212 matrixM — 1. It results in an
even polynomial of degree 12 in the shift operafpmwhich

is equivalent to the characteristic polynomial of the matrix
M. With definition (10) for £, we obtain from Eq(11) the
master equation

i=6
2, MaiPr.2i(k) =0, (12

where the coefficientsy,; of the characteristic polynomial of
M are listed in the Appendix. We add two comments. First,
Eqg. (12) is a 12th-order linear difference equation (k)
indicating that the corresponding random walk is a 12th or-
der Markov chain. In the continuum limit, it would corre- L - o

spond to a linear partial differential equation with time de—'ohptons move along six directios, . . ., be. By transmissiontoa
Pon P q neighboring cell, the helicity of the photon path changes and with it
rivatives up to the 12th order. Second, due to thethe step lengths.
normalization of the probability distributiori P,,(k=0)

FIG. 3. Path of photons injected with an angleg# 30°. The

=1], we find which we make the ansa{z?),=an. The constana is eas-
i=6 ily found from Eq.(16) and we obtain in the long-time limit
> my=0, (13
=0 . 1S

and can therefore identify-1 as two eigenvalues . {x >“_§ (9_k)2( ) On’ 17

We do not make an attempt to determiRg(k) com-
pletely. Instead we are interested in the long-time limits of its  ai=6n: L _ wi=5
first two moments. Taking first derivatives of E@.2) with Whire %:Ei:lzl my; and r’ahe derivative of,;=;_jm,,
respect td and using Eq(7), we find a master equation for POth atk=0 are given in the Appendix and EGL3) was
the mean displacement along thelirection, used. For large values af, the time forn steps ist

=1.9n/c, where 1.5 is the average step length. Returning

i=6 to physical units, we obtain the diffusive behavior for the
> Mailk=o{X)ns2i=0 (14  mean-square displacements
i=0
2y 2y
and the equivalent result for thedirection. To arrive at Eq. (x)=2Dy7 and (y°)=2Dyr, (18)

(14), we usedIm,; / k|,— o= 0 since the step vectots; and
b, add up to zero. To solve Eq14), we insert the ansatz
(x)pcz", which readily results in the characteristic equation 11—r

for M at k=0. We already know the two eigenvaluesl, D(60°)=D,(60°)=D,(60°) == —Ic. (19)
the others are listed in the Appendix. Their magnitudes are 2.r

always smaller than one. We can therefore conclude that in

and the diffusion constants read

the long-time limit or for largen As expected, the diffusion is isotropic. Note that although the
single-step lengths depend on the starting posiigon the
(X)n=(Y)n=0. (15  edge of a hexagon, only their average appears in the final,

) reasonable result.
The mean-square displacement alongbeys

B. Angle of incidence:¢=30°

i=6 2
Jd My;
2 —
Zo My [k=o{ X n+2i— ) =0 (16) For completely reflecting edges, the photons move along
k=0

2
K |- a closed path again composed of six stegee Fig. 3 The

and an equivalent equation is valid aloggNote that Eq. three step vectorsh=bb; (i=1,2,3), and their reversed
(16) corresponds to Eq14) but now with an inhomogeneity. partnersp;=Db’b; (i=4,5,6) generally possess different step
Since we already know the solutions of the homogeneoukengthsb andb’, which depend on the starting positiag
equation, they decay to zero or give a constant of the order ain the edge. The average, however, is always the same: (
1 in the long-time limit, we just need a special solution for +b’)/2= \/3/2.
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In the central cell of Fig. 3, the photon is always reflected
to the left. As before, for partially reflecting edges<(1),

; : Theory: 600 —— 1
the photons move to a neighboring cell, where they are re- | eory: oY,
: - : : R Theory: 30 - i
flected to the right. In the preceding section, we introduced \ TEM —meneme
tion, after transmission to a neighboring cell, the step vectors a? 220 Z 1

D(e)/(Ic)

along one direction interchange their lengtsse Fig. 3. We

take this into account by introducing step vectkffsand b .
As before, we introduce the probabili;'(x) that the

photon after itsith step arrives at positionwith step vector

b and establish a set of 12 master equations from which we 1

only give the first two ones ol . TR g

0.1 0203 0.4 0506070809 1

r

8
7
6
the helicity = to distinguish between the two cases. In addi- 5
4 [ o
05-28 +
3
2

Prh(x)=rP(x—b{)+tP *(x—b;),

P, L (x)=rP, *(x—by)+tP (x—by). (20) FIG. 4. The diffusion constant in units of edge lengttimes
" " " light velocity c as a function of intensity reflectance Theoretical
Applying the same formalism as in the preceding sectionand Monte Carlo simulation results are denoted, respectively, by
we find again that in the long-time limit the photon movesiines and points. The dash-dotted line refers to the two-state model
diffusively with the diffusion constants (TSM).

Bi-r For anglesp=30°, 60° and values between 0° and 30°,
D(30°):DX(30°)=Dy(3O°)=7 TIC’ (21)  the simulation is repeated for each intensity reflectance
€[0.1,0.2...,0.9] with all values of X
€[0.05,0.1...,0.9]. In Fig. 4 we plot the average of the
diffusion constant®, andD, as a function of. The diffu-
sion constants ap=60° (open circlegD) and¢=30° (open
boxes[]) are shown for all values of the starting poiqgt
The numerical results agree very well with the theoretical

] We note th39(30°) 1S Iﬁ:ger tgam(Gg")hl_‘rom E?I'(lg) values of Eqs(19) and(21) for the diffusion constants. The
y a factor ofy3. We roughly understand this as follows. In \o|ative error of the numerical values with respect to the

the casep=30°, the photons are reflected into the forward g retical prediction is less than 2% and within our statis-
direction, i.e., their direction changes by a total angle of only; | arror. No dependence on the starting poigtis ob-
60°. For ¢=60° they are reflected in the backward direc- served in .agreement with theory

tion, since the direction changes by 120°. In the latter case, e giffusion constants for angles between 0.5° and 28°
the dlffusmrj is t_herefore much more hindered which leads tclplus symbol+) all lie close toD(60°). A careful inspection
a smaller diffusion constant. shows that they are situated above the 60° line. Furthermore,
our statistical errors reveal that the deviation from the 60°
IV. NUMERICAL SIMULATIONS line is significant. To investigate this observation further, we
yerformed a series of simulations for the angular ranges

independent of the starting positiag on the edge. Interest-
ingly, they agree with the diffusion constabt(90°) for ¢
=90° introduced in Eq(2) for the one-dimensional random
walk.

To access the photon’s random walk for injection angle o N o om0
different from 30°, 60°, and 90°, we further studied our < L0:> :6:4%- .. .24.17, ¢€[25°,267, ...,29], and ¢

model by numerical simulations. The computer programf[zgild’zjﬁz | n ’29;193'”11;0 m;:g)eass ég? r?/s?lutlorn,i the
takes 10 photons at the initial positiox, (on one of the 'coca® usion constard(¢)/D(@=60") versusr is

edges of the hexagpand with an injection angle. Then it plotted in Fig. 5. We have averagél(¢) over all starting

generates the trajectory of each photon following a standaraos't'onsxo' '_I'hg errorbgrs showr_1 fop=0.5° reflect the
Monte Carlo procedure and evaluates the statistics of thgtand_ar_d deviation of this averaging process. The errorbars
photon cloud at times < [500,650. . .,4850] (in units of areF.S'm"agfor a”lthe Otherl PO e features. Andles d
I/c). The mean-square displacement measuring the width Q[f '9“0“3 reveais ;e\t/e(;a r_(;:trr]nar a} N ?a ur?s. 6(';09 es close
the photon cloud is computed for each snapshot at tiraed 0 ¢=7 are associated with angies close 10 , as ex:

then fitted to Dr+ay for each spatial direction by the pIameod in Sec. 1l. So the dlffusmr_n constant IS close to
. ; : D(60°) as demonstrated by the full line. Increasing now the
method of linear regression. An offsaf takes into account

the initial ballistic regime. Within our statistical error®, incident angle fromp=0° to o=30° results in a systematic
andD, give the same result and the correlation factor increase of the diffusion constant. However, or-30°, we

y do not obtain the resul(30°)/D(60°)= /3 as one might
expect. Instead the ratiD(¢)/D(60°) converges against a

:M (22) value between 1.15 and 1.16. Though the calculation of
VO (y?) D(¢) is beyond any theoretical treatment, we succeeded to
treat the limiting case ofp— 30° analytically in a two-state
is not significant, so the diffusion is isotropic. model which we present in the following section. The result
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1.18 \ - 0.5 roes for r=1. That means the motion of the photon consists of
116 | o " = 2 " ¢ - 6.4 two different states. In the first one it spends some tize
11af L 2 oxo= d L BT diffusing in the plane. Then it switches to the second state
T A |18% where it performs essentially a one-dimensional random
S g4l ) 2 ) B walk, b_om_mcin_g between two opposit_e edges during the time
% 108 | S .7 . |ero s Ty, until it switches back to the previous state. In the theory
= °o . 280, - of random walks such a process is described by a multistate
g 1oer - | . 1 gg-} formalism [17]. It calculates the diffusion constant for the
104 o v - 1006 - two-state process as an average of the diffusion constant for
102 ¢ 1 R R 29_7: o the single states weighted by the average waiting timgs
1 209" o and ,, the random walker spends in each state,
%%, 0.2 07'4 U 0:6 j 018 1 D,(30°) 7pq+D
. . . . T T
: Dy(¢—307)=——_ ===, (239
FIG. 5. The diffusion constard (¢) plotted relative tdD (60°)
as a function of intensity reflectancéor different values of injec- . D(30°) 724+ Dpymp
tion anglee. The dashed line is the limiting cas¥ ¢— 30°) cal- Dy(¢—30°%)= Toat T (230

culated within the two-state model in Sec. V.
_ o R . _. The effective diffusion constants for the bouncing stéig,
is already indicated as dashed line in Fig. 5 and also in Figy,q D,., can be related t®(90°) as follows. We assume
e . . yy .
4. In addition, Fig. 5 demonstrates ta{y) systematically  hat |l three possible bouncing states between opposite
deviates from the simple (ir)/r law calculated for the gqges occur with the same probability. Furthermore, their

analytic cases. _ _ _ contributions toDy,, and Dy, are obtained by projecting the
We started to investigate disordered foams. In an impergne_dimensional random walk onto theand y direction,
fect honeycomb structure with slightly random disorder, thehich finally gives

special case forp=30° does no longer exist, as expected.

Furthermore, all the curves in Fig. 5 for different injection Dpy= 2c0£30°D(90°) = 1D(90°), (249
angles collapse on a single curve, i.e., the diffusion constant
no longer depends op. However, the surprising result is DbyZ%(Z Sif30°+1)D(90°)=1D(90°).  (24b)

that the diffusion constant still deviates from the usual (1

—Nir law Si.”ce it contains. an Qdditional factor linearrin The calculation of the waiting times is a geometrical exer-
So one special feature of Fig. 5 is preserved. We can explaigige | et us consider first the bouncing state which the pho-
this beha_vlor within an_effectlve cage model. Details will beton enters at the lower right corner 1 of the hexagon in Fig.
reported in a forthcoming papg27]. 6. It then travels along the diagonal hitting the opposite edge
45, a small distancés,, away from the corner 5. In succes-

V. TWO-STATE MODEL sive reflections or transmissions, the photon’s position moves
along the edge until it hits either the corner 2 or 4. Here the
photon switches to the two-dimensional state. In our reduced
units, the number of steps, in the bouncing state is thus
approximated by ¥s,. Multiplied with the step timedr,,
gives the waiting time

In Sec. Il we explained that the incident angles= ¢,
=30° andg;=90° correspond to separate random walks in
two and one dimension. However, i, deviates slightly
from 30°, the two random walks mix as illustrated in Fig. 6

Tb:nba’i’b, (25)
with

1 V3

np=——=—"—— and ém,=——5—5——.
3 tan(30°— o) °" cog30°- ¢) -

A}
\
\
\
\
\
N
N
N
N
N
N
N

TITITIIIII N AMENNN

In the two-dimensional random walk, the photon takes a
short and a long step to move a distaidsg, along the edge.
The waiting timer,q is then calculated from the number of
stepsn,y and the step timé7,q as

FIG. 6. Path of a photon injected with an angle-29.4° rela-
tive to the bottom edge of the hexagonal billiard. The photon circles Tog=MN2q0Tog (27
in the hexagon until it switches to a one-dimensional bouncing state
between the edges 12 and 45. with
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2 sing 3 topological and geometrical disorder based on a Voronoi
Nygg=——=——— and d&my=-——. (28) foam model[15]. In addition, as just mentioned, we have
V3 sin30°— ¢) 4sing implemented the exact intensity reflectanceusing the
) ) ) . o Fresnel formulas. Furthermore, we have introduced disorder
It is the ratio 7,4/ 7, which enters the effective diffusion jn the film thickness. The results will be presented elsewhere
constants. Using Eq&25)—(28) givesT,q/ 7,=1/2. Theratio  [27]. A possible extension of our model might include scat-
is independent ofp due to our approximation fon, and  tering from the Plateau borders as suggested in [Réf.
N,q. It becomes exact fop— 30°. Together with Eq9.24)
and the actual values f@(30°) [Eg. (21)] andD(90°) [Eq. ACKNOWLEDGMENTS
(2)], we obtain from Eqs(23) )
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This is the value indicated in Fig. 5 relative B(60°) as
dashed line. The limiting value of,y4/7,=1/2 means that
there is no smooth transition ©(30°) for ¢— 30°.

APPENDIX
VI. CONCLUSIONS

We have studied a persistent random walk on a honey- _The matan, introduced in Eq(8), can conveniently be
. . “2written in block form
comb structure based on rules motivated by geometric optics.
Both analytical and numerical studies confirm the diffusive 0 tM; O 0 rM; O
behavior of the photons in the long-time limit. Three cases of
P 9 tM, 0 O rM, O O

the injection anglep=30°, 60°, and 90°, allow an analytic

expression forD(¢) from which the third one for a one- rM, O 0O tM, O 0
dimensional persistent random walk is well known in litera- M= 0 0 tM 0 o ™M |’
ture. The second and third case can be solved although they 2 2
correspond to a Markov chain of 12th order. In all three 0 0 rMz O 0 tM3
cases, the diffusion constant is proportional to—({J/r 0 rMz O 0 tMz3 O
which expresses the fact that fior 0 the photon transport is (A1)
ballistic and that for =1 the photon stays confined to the

initial hexagon. Numerical simulations demonstrate an interWhere

esting dependence of the diffusion constant on the injection 00

angle ¢ summarized asD(60°)<D(¢)<D(¢—30°) 0:< )

<D(30°), whereD(60°) andD (¢—30°) differ by a factor 0 0/’

of 24/3/3. This is a remarkable property since usually the

diffusion process erases the memory for the initial condi- 3 0 expik-by) A2
tions. The numerical results &f(¢) reveal a fourth analyti- n— exp(ik-bye) 0 (A2)
cally solvable case for injections angles—30°, where the

motion of the photon switches between a one- and twoThe characteristic equation M reads

dimensional diffusion state. Accordingly, the random walk is i—6

described within a two-state model. In addition, the simula- _ 2

tions show a significant deviation from the simple-(8)/r detM—z1)= 2, m;2”' =0, (A3)

law of the analytic cases for which we do not have any

explanation so far. where
In light transport the transport-mean-free péthplays a
determining role since it is a measure for the length over mp=1,

which the direction of propagation has fully chandédl In
two-dimensional systems, it is defined Miz=cl*/2. As a
key parameter, it can be measured experimenidiiy6]. In
our case it is of the order of (&r)l/r. In a realistic model
for r based on the Fresnel formulas and for thicknessek
the liquid films comparable to the wavelength of light, we

Myo=—2(1-r)%0y,
mg=2(1—r)%(r2—4r+2)o% +(1—-r)*o,,

Me=2(1—1)*(—1+2r)o3—2(4— 24 +54%—56r3+27r*

find a significant dependence on incident anglendd [27]. —6r5+2r9),

When averaged oves andd, we obtainr ~0.2 which gives

realistic values of* =4l [10]. M= (1—2r)2(1—r1)%o% +2(2—4r +r2)(1—3r
Of course, our model is highly simplified. We therefore

have extended our studies towards real foams by introducing +2r%)2%g,,
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m,=—2(1-2r)*1-r)%c}, Z3=—2,=|2r—1|,
me=(1—2r)%, (A4) Z5=2¢=—2;=—2g=—0.5 —0.5J4—8r+r?,
Wlth 2922102 _le: _212: _0& +05\/4_8r + r2,

o1 = expli (by + byg) - K]+ expli (b + byg) K] (A6)

+exqfi (b + by - K], with |z|<1 for O<r=<1.

The coefficients introduced in E¢L7) are evaluated as
oo=exfd 2i(by + byg) - k]+exd 2i(by + byg) - K]

S, S, -
+exyf 2i (g + bag) - k], e |k:0__[?k)2/ |k=0=108(1—r)?r
03=2c0$ (by+ bys— b3 —bss) - k] +2 cog (by + bys— Dby Solko=T72(1—1)r®, (A7)
—byg) - K]+ 2 cog (b + 35— by — bye) - K]. (A5)  \where
The eigenvalues, evaluatedlat O, are i=5 i=6
S;=> my and S,=2 2i my. (A8)
Zl:_22:11 i=1 i=1
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